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1|Introduction    

Distributed optimization has become a popular approach for dealing with today’s networks having huge 

datasets in various areas, such as machine learning and sensor networks, to name a few. Datasets in these 

networks are often produced in a decentralized fashion, and transporting these datasets over a network is 

usually undesirable either due to security concerns or traffic constraints. 

Classical centralized optimization methods often work well for small networks with a central node directly 

communicating with all the other nodes for the reception of data to solve the optimization problem. But, this 

often fails as the network becomes large and security or traffic concerns impel nodes to share data only with 

neighbors. Decentralized methods should be appropriated to deal with such problems; that is, nodes should 

cooperate in finding an optimal solution for the network. In solving a centralized constrained optimization 
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Abstract 

We propose a time-varying dual accelerated gradient method for minimizing the average of 𝑛 strongly convex 

and smooth functions over a time-varying network with n nodes. We prove that the Time-Varying Dual 

Accelerated Gradient Ascent (TV-DAGA) method converges at a linear rate with the time to reach an ε-

neighborhood of the solution being of 𝒪(ln
1

ϵ
). We test the proposed method on two classes of problems: L2-

regularized least squares and logistic classification problems. For each class, we generate 1000 problems and use 

the Dolan-Moré performance profiles to compare our obtained results with the ones obtained by several state-

of-the-art algorithms to illustrate the efficiency of our method.  
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problem, efficiency is measured by the amount of required computations, while in a distributed constrained 

optimization problem, the amount of data communication is a more decisive element.  

Several authors have considered distributed optimization on time-varying undirected graphs. Nedic et al. [1] 

combined an inexact gradient method with the gradient tracking technique on a time-varying undirected graph 

having a doubly stochastic communication matrix. They established a polynomial time complexity of their 

method. Jakovetić et al. [2] considered a time-varying network with each node at iteration k being active with 

a probability pk. They established a probabilistic sub-linear convergence rate in the sense of expected distance 

to the solution. Maros and Jaldén [3] proposed a dual method for an always-connected time-varying 

undirected graph. They assumed double stochastic communication matrices with a constraint on the spectrum 

of these matrices. They proved an R-linear convergence rate. They further proposed a more computationally 

economical algorithm, trading off the convergence rate of the original algorithm [4]. Rogozin et al. [5] 

proposed a dual gradient method based on Nesterov’s idea for time-varying networks with a finite number 

of changes over time. Wu et al. [6] also proposed a dual gradient method on time-varying networks. Ding et 

al. [7] considered the privacy of data exchange to be low when the exact information is transmitted. So, to 

preserve privacy, the addition of noise to transmitted data is inevitable. They discussed the trade-off between 

accuracy and privacy. They also proved linear convergence rate in a mean sense. 

We extend the ideas of the dual gradient ascent and Nesterov’s accelerated gradient ascent methods to time-

varying graphs. Using a time-varying model, we handle network topology changes, including link failure and 

latency. We establish that our proposed Time-Varying Dual Accelerated Gradient Ascent (TV-DAGA) 

method is linearly convergent on time-varying and always connected networks.  Our work is an extension of 

the work of [8] and is close to those of [5] and [9]. However, the authors of [8] and [9] considered time-

invariant networks, and the authors of [5] considered a time-varying network with a finite number of changes. 

Here, we consider time-varying graphs with infinitely many changes over time. Then, in a comparative 

investigation, we use two performance profiles and compare the performance of our methods with the ones 

due to some state-of-the-art methods, namely, DIGing [1], FDGM [6], Eco-PANDA [4] and PANDA [3], 

on two classes of optimization problems: L2-regularized least squares and logistic classification problems. 

First, we randomly generate 1000 problem instances with 40 < n < 80 nodes. Then, corresponding to each 

class, we first compare the performance of the methods by the Dolan-Moré performance profiles using the 

performance measure as the error after 100 iterations. Then, we compare the methods again using the Dolan-

Moré performance profiles with the performance measure being the number of iterations to reach either a 

relative accuracy of ϵ = 10−10 or an absolute accuracy of δ = 10−35. We will call this (ε,δ)-accuracy. We show 

that TV-DAGA outperforms all the other algorithms in terms of accuracy after 100 iterations, as well as in 

terms of number of iterations to reach an (ε,δ)-accuracy.  

2|Time-Varying Dual Accelerated Gradient Ascent Algorithm  

Here, we consider the minimization of the sum of n functions over a time-varying network with n nodes. We 

model the time-varying network with the graph sequence {Gk}k=0
∞ , where Gk = (V, Ek) is a simple connected 

undirected graph, with V = {1,2, ⋯ , n} being the set of nodes and Ek being the set of edges at time k. Each 

node 𝑖 has access to a private function fi(θ) which is assumed to be α-strongly convex, with its gradient being 

β-Lipschitz. Our goal is to find the minimizer of the average of these n local functions, that is, to solve the 

problem. 

 

 

We assume that nodes upgrade their values by communicating with their neighbors. Moreover, the fi are 

private objectives, and nodes cannot share their objective values with neighbors. However, they can share 

their primal and dual variables and gradient values with neighbors. We make the following assumptions for 

Problem (1). 

min
θ∈ℝd

f(θ) =
1

n
∑

i=1

n

fi(θ). (1) 
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  Assumption 1. Each function fi is α −strongly convex and β −smooth, that is, there exist β ≥ α > 0 such 

that for all x, y ∈ ℝd, we have that α ∥ x − y ∥2
2≤ 2(fi(x) − fi(y) − ⟨▿ fi(y), x − y⟩) ≤ β ∥ x − y ∥2

2.                                                                                            

Note that in Assumption 1, for α-strong and β-smooth objective functions, the existence of a unique solution 

θ∗ is guaranteed. The following assumption briefly explains the regulations under which the nodes compute 

and communicate.  

Assumption 2. Each node i has a computing unit which can compute fi, the Fenchel conjugate fi
∗, the 

gradients ▿ fi and ▿ fi
∗. Moreover, each node has a communicating unit that can distinguish its neighbors at 

time k and exchange primal, dual, and gradient values with the neighbors.  

We also choose a Laplacian-based model for the communication matrix because the eigenvalues of the graph 

Laplacian matrix provide information about graph connectedness and the number of graph components in a 

disconnected graph. Moreover, the smallest nonzero eigenvalue of the Laplacian matrix, called the eigengap, 

plays a vital role in estimating a graph-dependent step size. Our communication model is introduced having 

the following assumption.  

Assumption 3. The communication model is represented by the Laplacian matrix sequence {Wk}k=0
∞  as 

follows:  

 

where deg(i) denotes the degree of node i, that is the number of connected nodes to i at a time k.  

We also define another quantity based on the graph spectrum, which is highly used in our analysis.  

Definition 1 ([8]). For any integer k ≥ 0, the quantity τk = λ2(Wk)/λn(Wk) is called the normalized eigengap 

of the connected graph Gk with the Laplacian matrix Wk . We also define 𝜏 = inf
k≥0

τk.  

A very standard distributed reformulation of Problem (1) is to assign a variable θ𝑖 to each node i and rewrite 

Eq. (1) as follows:   

Since Problem (1) has a unique solution θ∗ and the fi are all strongly convex, the reformulated Problem (3) has 

also a unique solution θ1
∗ = ⋯ = θn

∗ = θ∗. Now, let us define Θ = [θ1, ⋯ , θn] ∈ ℝd×n and  F(Θ) =
1

n
∑

i=1

n

fi(θi). 

To include the network communication model in the kth iteration, we replace the above constraint with ΘWk =

0. Note that Wk is the Laplacian of a connected graph, and using Kirchoff’s law and graph connectedness 

assumption, we conclude that θ1 = ⋯ = θn if and only if ΘWk = 0. Now, we move one step further and 

replace the constraint ΘWk = 0 by its equivalent Θ√Wk = 0. This equivalence can be easily verified through 

the spectral decomposition of Wk. We use the above equivalence and build a sequence of subproblems: 

                                         

Each subproblem starts with an initial value Θk, and using a strictly decreasing method, we compute Θk+1 

such that F(Θk+1) < F(Θk). The value Θk+1 is used as the initial value for the next subproblem. This way, we 

construct a strictly decreasing sequence {F(Θk)}k=0
∞ , which is convergent to a unique value due to the lower-

boundedness of F. Also, Θk converges to the unique solution of  Eq. (3) due to the strong convexity of F and 

the equivalence of Eq. (3) with all the given Subproblems (4).  

The dual of Problem (5) is 

[Wk]ij = {
−1, (i, j) ∈ Ek,

deg(i), i = j,
0, otherwise,

 (2) 

min
θ1=θ2=⋯=θn

1

n
∑

i=1

n

fi(θi). (3) 

min
Θ√Wk=0

F(Θ), k = 0,1. (4) 
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The dual gradient method for solving this problem computes the following iterates:  

           

Let us consider the change of variables Xk = Λk√Wk to obtain Λk+1√Wk = Xk − ηk ▿ F∗(Xk)Wk. This relation 

inspires us to set the left-hand-side to be the next value and write Xk+1 = Xk − ηk ▿ F∗(Xk)Wk. We will prove 

that the iterates {Xk}k=0
∞  produce a dual objective sequence {F∗(Xk)}k=0

∞  , which is strictly increasing and, since 

it is upper bounded by F(Θ∗), converges to the unique solution of  Eq. (1). 

The acceleration idea has been introduced by Nesterov [10]. Scaman et al. [8] used this idea and introduced 

algorithms for time-invariant graphs. Here, we use the acceleration idea and give an accelerated method to 

deal with connected time-varying graphs. We provide the TV-DAGA method as Algorithm 1. 

Algorithm 1 is an extension of the dual accelerated gradient method for a time-invariant network considered 

in [8]. We will establish that Algorithm 1 is convergent if the graph sequence {Gk}k=0
∞  is always connected.  

Theorem 1. If the graph sequence {Gk}k=0
∞  is always connected, and Assumptions 1-3 hold, then Algorithm 1 

converges R-linearly to the unique solution of Problem (3), that is, Θ∗ = [θ∗, ⋯ , θ∗], with θ∗ being the unique 

solution of Eq. (1). Moreover, the time to reach an ϵ −neighborhood of the solution is 𝒪(
1

ln
1

c

ln
M

ϵ
), where c =

1 − τ√
α

β
 and M is a constant depending on the initial values.  

We provided a detailed discussion and the proof of Theorem 1 in [11]. 

 Algorithm 1. TV-DAGA algorithm. 

 

 

 

 

 

 

 

 

 

 

 

3|Numerical Experiments 

Here, the performances of Algorithm 1, DIGing [1], FDGM [6], PANDA [3], and Eco-PANDA [4] are 

compared on distributed L2 −regularized least squares and logistic classification problems. The 

implementations in this section are done on a MacOS Ventura 13.5.1 with 8GB RAM in a Python 3.8 

environment. However, practically, the implementations are to be made on a network.  

max
Λ∈ℝd×n

− F∗(Λ√Wk), k = 0,1, ⋯. (5) 

Λk+1 = Λk − ηk ▿ F∗(Λk√Wk)√Wk. (6) 

Data:    Y0 = 0, V0 = 0, f1, ⋯ , fn, Maxiter, δ, ϵ; 

 Result:   Θ∗ ∈ ℝd×n; 

 Set  k = 0; 
 Repeat: 

    Read Wk ; 

    Compute  τk = λ2(Wk)/λn(Wk);  

    Compute  αk = τk√α/β,    μk = 1/(1 + αk); 

    Set  Θk =▿ F∗(Xk); 

    Set Xk = Vk + μk(Yk − Vk); 

    Set Vk+1 = (1 − αk)Vk + αkXk −
βαk

λn(Wk)
ΘkWk; 

    Set Yk+1 = Xk −
ατk

λn(Wk)
ΘkWk; 

 Until:  

   |fi(θi,k) − fi(θi,k−1)| ≤ δ + ϵ|fi(θi,k)|, for all i, or,  

              k = Maxiter, or,  

              | ∑
i=1

n

▿ fi(θi,k)| ≤ δ. 
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  3.1|L2-Regularized Regression Problems 

In L2-regularized regression, we aim at solving the optimization problem 

 

where c > 0 is a regularization parameter. We set c = 0.2 and d = 20. We also pick all the ai and bi entries 

from a uniform distribution in the interval [0.1,1].  The entries of the graph sequence {Gk}k=0
∞  are chosen 

uniformly from the sample space of n-node-graphs with m = 5 × n edges. In our algorithm, we work with 

the Laplacian matrix of the graph sequence entries. However, the other algorithms need a sequence of 

symmetric doubly stochastic communication matrices. So, we use the sequence of Metropolis weight matrices 

for them (see [1]).  

We first implement our method and other state-of-the-art methods on a network with n = 100 nodes and m 

= 500 time-varying edges. We plot the error value as a function of k. The result is shown in Fig. 1a, Comparing 

TV-DAGA and PANDA, we see that they decrease with the same slope in early iterations, but eventually, 

TV-DAGA converges to a more accurate solution. On the other hand, comparing TV-DAGA with FDGM, 

we see that they converge with the same accuracy to the optimal solution, but FDGM decreases slower than 

TV-DAGA in early iterations. We also observe that TV-DAGA outperforms DIGing and Eco-PANDA in 

terms of accuracy and speed of convergence. 

Next, we randomly generate problem set P with 1000 problems with 50 ≤ n ≤ 80 nodes and m = 5 × n 

randomly changing edges. Then, we plot the Dolan-Moré performance profiles for accuracy after 100 

iterations in Fig. 1b; we see that TV-DAGA solves all the problems with the least error after 100 iterations, 

while PANDA solves all problems with errors at most 40 times the least error value. Next, we use problem 

set P and produce the Dolan-Moré performance profiles, with the performance measure being the number 

of iterations to reach within (10−10 ,10−35)-accuracy. The result is shown in Fig. 1c. We observe that TV-

DAGA reaches this accuracy with a minimum number of iterations for all the problems, while FDGM reaches 

this accuracy for all problems with a number of iterations between 1.2 and 1.4 times the number of iterations 

due to TV-DAGA.  

3.2|Logistic Classification  

In logistic classification, we aim to solve the optimization problem: 

 

where ai,j ∈ ℝd is a data point with an assigned value bi,j ∈ {−1,1}. Our goal is to use n × J data points and 

their labels to learn the coefficients θ ∈ ℝd of a linear classifier through solving the optimization Problem (8). 

We assume that the network has n nodes, and each node has J data points. In our implementation, we set c 

= 0.2, d = 20, and J =10. We also pick all the ai,j entries from a uniform distribution in the interval [0.1, 1] 

and all the bi,j randomly from the set {−1,1}. The entries of the graph sequence {Gk}k=0
∞  are chosen uniformly 

from the sample space of n-node-graphs with m = 5 × n edges.  In Fig. 2a, we compare the performance of 

our method with other methods over a network with n = 50 nodes. Here, we cannot analytically compute θ∗ 

and so the performance measure is the norm of the sum of gradients that is to converge to zero. As seen, 

TV-DAGA outperforms all the other methods after a few iterations. We also randomly generate problem set 

P with 1000 problems with 50 ≤ n ≤ 80 nodes and plot the Dolan-Moré performance profiles for accuracy 

after 100 iterations. The result is shown in Fig. 2b. As we see, TV-DAGA solves all the problems with the 

least error after 100 iterations, while FDGM, after 100 iterations, solves all problems with errors at most 80 

times the error due to TV-DAGA. We also use problem set P and produce the Dolan-Moré performance 

profiles, with the performance measure being the number of iterations to reach within a (10−10,10−35)-

min
θ∈ℝd

1

n
∑

i=1

n

(ai
Tθ − bi)

2 + c ∥ θ ∥2, (7) 

min
θ∈ℝd

1

n
∑

i=1

n 1

J
∑

j=1

J

ln(1 + e−bi,jai,j
T θ) + c ∥ θ ∥2, (8) 
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accuracy. The result is shown in Fig. 2c. Again, we see that TV-DAGA on all problems reaches the desired 

accuracy with the least number of iterations, while FDGM reaches the desired accuracy on all problems with 

a number of iterations being between 1.2 to 1.6 than the number of iterations due to TV-DAGA.  

4|The Canadian Institute for Advanced Research-10 Dataset  

The Canadian Institute for Advanced Research (CIFAR-10) dataset contains 60000 colored images in 10 

classes. Each image is represented by a vector of length 3072 and labeled by an integer number in [0,9]. For 

our implementation, since our classifier is binary, we pick all the vectors labeled by numbers 1 or 2. We relabel 

the selected vectors by -1 and 1, respectively. So, we have 10000 data points in ℝ3072 with labels belonging to 

{−1,1}. We assume that our network has n = 50 nodes, and each node possesses J = 200 data points. In Fig. 

3, we see the log plot for the norm of the sum of gradients at iteration k. We see that TV-DAGA outperforms 

all the other methods in terms of speed and accuracy. 

  a. 

b. 

c. 

Fig. 1. L2-regularized regression problem on; a. a single 

problem with 𝐧 = 100, b. and, c. 1000 problems with 50 

≤ 𝐧 ≤ 80 nodes. 
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                    a. 

b. 

c. 

Fig. 2. Logistic classification problem on; a. a single 

problem with 𝐧 = 50, b. and, c. 1000 problems with 

50 ≤ 𝐧 ≤ 80 nodes. 
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Fig. 3. Logistic classification problem on a network 

with 𝐧 = 50 nodes and 𝐉 = 200 data points per node, 

with data points being from the CIFAR-10 dataset. 

 

5|Conclusion 

We proposed a time-varying dual accelerated gradient method for finding the minimum of the average of n 

strongly convex and smooth functions over a time-varying connected network. We proved that our method 

is R-linearly convergent if the network is always connected. We applied our method to 1000 randomly 

generated L2-regularized least squares problems and 1000 randomly generated classification problems. In all 

cases, we observed that our algorithm outperformed all the other algorithms in terms of accuracy after 100 

iterations as well as in terms of number of iterations to reach a specified combined absolute-relative accuracy. 

We also showed the out-performance of our method on classification problems with a real dataset named 

CIFAR-10. 
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