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1|Introduction    

Sanchez [1] is credited with the initial introduction of the fuzzy relation system, encompassing equations and 

inequalities. The most commonly examined fuzzy relation system involves operations such as max-min or 

max-product. Research on fuzzy relation systems primarily focuses on two key areas: 1) determining the 

solution set, and 2) addressing the associated optimization problem [2], [3]. proposed a novel form of fuzzy 

relation system characterized by addition-min composition [4]. This addition-min Fuzzy Relation Inequality 
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(FRI) was developed to model P2P network systems. In instances where the download traffic requirements 

of terminals within such a system are equal to or greater than
1 2 mb ,b ,...,b , and so forth, the P2P network 

system can be represented as the following FRI system. 

The initial research on addition-min fuzzy relation systems concentrated on identifying Model (1) minimal 

solutions [4]. The authors established a necessary and sufficient condition to determine if a general solution 

is minimal within the entire solution set. Additionally, they introduced an effective method for finding certain 

specific minimal solutions of Model (1) based on this examination condition. 

To facilitate understanding, we will revisit using an addition-min fuzzy relation inequalities system within the 

P2P file-sharing network (refer to Fig. 1). We represent all terminals in the P2P network
1 2 nT ,T ,...,T , each pair 

of terminals connected by a line. The bandwidth between terminals
iT jT is denoted as ijc (When data is being 

sent from jT to 
iT ). Let jy 's represent the quality level at which jT each terminal shares its local data with other 

terminals. Due to bandwidth limitations,
iT the actual download jT traffic is illustrated when a terminal 

download ij jc y s the resources it has requested. 

Fig. 1. P2P file sharing system. 

iT  We will choose a terminal with the greatest download traffic to obtain the resources it needs. If 
iT the 

download traffic requirement is at least
ib , then we have 

By integrating the needs of all terminals, we create the one-sided Model (1), which has been examined in 

previous studies [5], [6]. 

In the current literature [7], [8] the terminals' needs have been addressed one-sidedly. Specifically, the authors 

focused solely on the minimum requirements, neglecting the maximum limits. To address this oversight, we 

expand on the upper limits of the requirements in this study. We assume that the bilateral requirements for 

the terminal 
iT are at least 

ib  and at most
id . With this approach, the requirements for all terminals can be 

represented as a two-sided FRI system using addition-min composition. 

11 1 12 2 1n n 1

21 1 22 2 2n n 2

m1 1 m2 2 mn n m

c y c y ... c y b ,

c y c y ... c y b ,
             

.......................................................

c y c y ... c y b .

      


      


       

 (1) 

i1 1 i2 2 in n ic y c y ... c y b .         
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Our work includes several key contributions: 1) identifying a minimal solution that is less than or equal to a 

specified solution in the two-sided Model (2), 2) identifying a maximal solution greater than or equal to a 

specified solution in the two-sided Model (2), and 3) Using the findings from 1 and 2 to develop the structure 

of the solution set for Model (2) and providing a formal proof. 

The remainder of this document is structured as follows. Section 2 presents essential notations and 

definitions. Section 3 introduces an efficient method for finding a minimal solution that is less than or equal 

to a specified solution. Section 4 addresses finding a maximal solution greater than or equal to a given solution. 

Building on the findings from Sections 3 and 4, Section 5 explores the structure of the solution set for Model 

(2). Finally, Sections 6 and 7 contain the discussion and conclusion, respectively. 

2|Preliminaries 

This part clarifies certain notations and definitions related to the Model (2). For ease of reference, we will 

define two index sets below.    I 1,2,...,m ,J= 1,2,...,n .   

All the parameters ijc i I, j J   and variables jy j J are standardized. Once standardization is complete, 

we typically assume that  ij jc , y 0,1 . Model (2) can be expressed in matrix form as follows: 

where 

Denote  

The symbol S denotes the collection of all solutions for Model (2). 

 Definition 1. A Model (1) or (2) is considered consistent if it has at least one solution [9]. 

A solution Y S  is said to be minimal, if y S, y Y  any, which implies that y Y . On the contrary, a solution

Y S  is said to be maximal, if for any y S, y Y  , means that y Y . Besides, a solution Y S is considered 

maximum if y Y  it holds for any. y S.  

Proposition 1. If Model (1) is consistent, it possesses a singular maximum solution [4]. 

Proposition 2. If the Model (1) is consistent, the solution set can be expressed as  
x X

x, x


 where x  denotes 

its unique maximum solution and X  is the collection of all minimal solutions [9]. 

Proposition 3. If Model (1) has at least two minimal solutions, it will have an infinite number of minimal 

solutions [9]. 

Proposition 4. If 0x a Model (1), then there exists a minimal solution 0x , where 0 0x x  [10]. 

1 11 1 12 2 1n n 1

2 21 1 22 2 2n n 2

m m1 1 m2 2 mn n m

b c y c y ... c y d ,

b c y c y ... c y d ,

.......................................................

b c y c y ... c y d .

       


       


        

  

T T Tb Coy d ,   (3) 

     1 2 m ij 1 2 nm n
b b ,b ,...,b ,C c , y y , y ,..., y ,


     

 1 2 md d ,d ,...,d ,   

  n T T TS y 0,1 b Coy d .     (4) 
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In Sections 3 and 4, we consistently consider 0y S  a specified solution to Model (2). Furthermore, we will 

conduct a deeper analysis of the structure of the solution set for Model (2), taking into account all minimal and 

maximal solutions. 

3|Identifying a Minimal Solution 

Let 

If 1I we refer to 

It is clear that 1

iΔ 0  for any 1i I . Denote 

and  0 0

1 1 2 ny = y , y ,..., y . 

Remark 1. We have 0

1 1y y 0  and 0 1y Y S  . Moreover 1 1y y  , it holds that.  

Proof: If 1I   so, then clearly 0 1y Y S  . Now, take into account the situation 1I  . There exists 1 1i I , 

such that 

This also suggests
11 i 1y c

1i 1 1 1c y y   that. Specifically, 1 1y y  we have 

and thus 

we have 

For 1i I , we have 

and 

0

1 ij j i

2 j n

I i I | c y b .
 

 
    
 

  (5) 

1 0

i i ij j 1

2 j n

Δ b c y ,for all i I .
 

     (5) 

1

1

11
i 1

i I

0             if I ,
y

Δ       if I ,



  


 (5) 

 0 0 0

1 2 3 ny , y , y ,..., y S.   (5) 

1 1

1 0 0 0

1 i1 i1 i j j i 1 1 1

2 j n

0 y b c y c y y .
 

           

1 1

0

i 1 1 1 1 i1 i j j

2 j n

c y y y b c y ,
 

         

 0 0 0

1 2 3 ny , y , y ,..., y S, 
1i I ,   

0 0

i1 1 ij j ij j i

2 j n 2 j n

c y c y c y b .
   

         

0 0

i1 ij j ij j i

2 j n 2 j n

c c y c y b ,
   

        

0 1 0

1 ij j i ij j i

2 j n 2 j n

y c y c y b ,
   

          
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  and hence 

We have 0 1y Y S  . We ultimately receive  1 2 ny , y ,..., y Y S  such that 

Remark 2. Y is minimal in S. 

Proof: This is a straightforward conclusion based on Remark 1. 

Theorem 1. Let 0y S be a solution of Model (2). Then, a minimal solution Y S 0Y y exists [11]. 

Proof: It can be inferred from Remarks 1 and 2. 

Algorithm 1. Solving a minimal solution less than or equal to 0
y . 

Step 1. Let k : 1.  

Step 2. Compute 

Step 3. If kI  , then ky 0 . Otherwise, if kI  they compute, 

Step 4. Let k : 1.    

Step 5. If k n , then return to Step 2. Otherwise k n , go to Step 6.  

Step 6.  1 2 nY y , y ,..., y is a minimal solution of Model (2), satisfying 0Y y .  

Example 1. Consider a two-sided fuzzy relation inequalities system that utilizes addition-min composition, 

as outlined below. 

Let  0y 0.6,0.4,0.5,0.4 be a given solution of the system. Find a minimal solution to the system that is less 

than or equal to 0y . 

Solution: For k 1 , since 

Thus 

0

i1 1 ij j i

2 j n

c y c y b ,
 

      

n 2 1 0Y Y ... Y Y y .       

0

k ij j ij j i

1 j k 1 k 1 j n

I i I c y c y b .
     

  
      
  

   (10) 

k

k

k i
i I

y Δ ,


   (11) 

k 0

i i ij j ij j

1 j k 1 k 1 j n

Δ b c y c y .
     

       (12) 

1 2 3 4

1 2 3 4

1 2 3 4

1.0 0.5 y 0.6 y 0.3 y 0.3 y 1.6,

1.1 0.7 y 0.4 y 0.4 y 0.2 y 1.8,

1.3 0.6 y 0.2 y 0.4 y 0.3 y 1.7.

        


        
         

  

0 0 0

2 3 4

0 0 0

2 3 4

0 0 0

2 3 4

0.6 y 0.3 y 0.3 y 1.0,

0.4 y 0.4 y 0.2 y 1.0,

0.2 y 0.4 y 0.3 y 0.9.

      


     


     
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Consequently, 

It is a minimal solution to the system, meeting the condition 0Y y . 

4|Finding a Maximal Solution More than or Equal to 0
y  

Let 

If 1I   , we denote 

It could be checked 1

i i10 c  for any 1i I . Denote 

and 

Remark 3. Ŷ is a maximal solution in S, with 0Ŷ y . 

Proof: Analogous to the demonstration provided in Remark 1. 

Theorem 2. Let 0y S be a solution of Model (2). Then, a maximal solution Ŷ S 0Ŷ y exists [9]. 

Algorithm 2. solving a maximal solution more than or equal to 0
y   

Step 7. Let k : 1.  

Step 8. Compute 

Step 9. If kI  , then compute 

1

2

3

4

1 1 1

1 2 3

2 2 2

2 2 3

3 3 3 3

3 1 2 3

4 4 4 4

4 1 2 3

0.1 0.4 0.4,

0.1 0.2 0.2,

0.1 0.3 0.4 0.4,

0.1 0.1 0.3 0.3.









         

         

            

            

i
i I

i
i I

i
i I

i
i I

y

y

y

y

  

   1 2 3 4Y y ,y ,y ,y 0.4,0.2,0.4,0.3 .    

0

1 i1 ij j i

2 j n

I i I c c y d .  
 

  
      

  
  (13) 

1 0

i i ij j 1

2 j n

d c y ,for all i I .
 

      (14) 

1

1

11
i 1

i I

1             if I ,
y

      if I .


  
    


 (15) 

 1 0 0

1 2 n
ˆ ˆY y , y ,..., y .  (16) 

0

1 1 1

ˆ .
     

  
        

  
 k ij j ik ij j i

j k k j n

I i I c y c c y d  (17) 
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1i I For any, go to Step 9. Otherwise, go to Step 9 directly. 

Step 10. Compute 
kŷ  as follows, 

Step 11.  Let k : 1.    

Step 12. If k n , then return to Step 11. Otherwise, if k n not, then go to Step 13.  

Step 13.  1 2 n
ˆ ˆ ˆ ˆY y , y ,..., y  is a maximal solution of Model (2), satisfying 0Ŷ y . 

Remark 4. Let 1 2y , y S be two solutions for Model (2) that are satisfying 1 2y y . Then we have 1 2[y , y ] S . 

Proof: Take arbitrary 

Suppose 

and. It is clear that  
n

y 0,1 and 

Since 1 2y , y S our Model (2), we have 

Considering inequalities, we further get. 

Hence, y is also a solution of Model (2), and we have 1 2y , y S    . 

Theorem 3. Suppose Model (2) is consistent [11]. Then its complete solution set, denoted by S, could be 

characterized as follows, 

where S is the set of all minimal solutions, whileS  represents the set of all maximal solutions of Model (2). 

Proof: The subsequent observation is a straightforward extension of Remark 4. 

Theorem 3 establishes that for a consistent Model (2), the solution set can be fully characterized by its minimal 

and maximal solutions. Furthermore, this solution set can represent a collection of closed intervals. This 

structural representation of the solution set in Model (2) is analogous to a one-sided fuzzy relation inequalities 

k 0

i i ij j ij j

1 j k 1 k 1 j n

ˆd c y c y .
     

        (18) 

1             if ,
ˆ

      if .


  
    
 k

k

kk
i k

i I

I
y

I
 (19) 

  1 2

1 2 ny y ,y ,..., y [y ,y ].    

 1 1 1 1

1 2 ny y , y ,..., y ,  2 2 2 2

1 2 ny y , y ,..., y ,   

1 2

j j jy y y ,for all j J.    (20) 

1 1 1

i i1 1 i2 2 in n i

2 2 2

i i1 1 i2 2 in n i

b c y c y ... c y d ,

b c y c y ... c y d .

        


       

  

1 1 1

i i1 1 i2 2 in n

i1 1 i2 2 in n

2 2 2

i1 1 i2 2 in n i

b c y c y ... c y ,

c y c y ... c y ,

c y c y ... c y d .

      

      

       

  

 
ˆˆ ˆY S,Y S,Y Y

ˆS y Y y Y ,
  

     
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system utilizing addition-min composition. However, an analysis of the convexity of the solution set reveals 

notable differences. Prior formal proofs have demonstrated that the solution set of a one-sided addition-min 

system is convex; however, this claim does not apply to the two-sided Model (2). 

For example, consider the following two-sided addition-min system, 

It could be easily checked that both  1y 0.2,1 ,  2y 0.4,0.6 are solutions to the system. Take the convex 

combination of 1y and 2y as, 

Then we have 

Hence, the convex combination yc is no longer a solution of the system. This indicates that the system's 

solution set is a non-convex set. 

5|Conclusion 

The second system discussed in this study is a two-sided FRI system with an addition-min composition. The 

research presented in this paper delves into various characteristics of this system, offering detailed 

methodologies for determining both minimal and maximal solutions. By establishing the existence of these 

solutions, the study proceeds to demonstrate a structural theorem governing the system's solution Model (2). 

The findings presented here are anticipated to facilitate further investigations into addition-min fuzzy relation 

inequalities. Notably, it is revealed that the entire system Model (2) is entirely defined by its minimal and 

maximal solutions, which collectively form a union of closed intervals. Unlike the one-sided Model (2), Model 

(2) may exhibit infinite maximal solutions and a non-convex solution set. A notable limitation of this research 

is the absence of a practical approach for determining the complete solution set of the Model (2), with only 

specific solutions currently identified. Future research endeavors will resolve all system Model (2) while 

exploring optimization problems constrained by this system, which presents another intriguing avenue for 

investigation. 
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